MAE625 – Radiation Heat Transfer

Course Syllabus

Instructor: Dr. Terence Musho, PE

Spring 2025

Instructor: Dr. Terence Musho, PE Office: Room 727 ESB Phone: (304) 293-3256 Email: tdmusho@mail.wvu.edu Office Hours: T 1:00 PM - 2:00 PM (In-person) or R 11:00 AM - 12:00 PM (Teams)

Lecture: MWF 11:00 – 11:50 PM Room: ESB-E851 or Collaborate Ultra

Optional Texts:

- Radiative Heat Transfer, M. F. Modest, 3rd Edition, Academic Press (Available via WVU eLibrary)
- Thermal Radiation Heat Transfer, R. Siegel and J. R. Howell, 5th Edition, CRC Press
- Fundamentals of Heat and Mass Transfer, F. P. Incropera et al.

Course Objectives:

- Develop advanced knowledge and analytical skills to solve radiation heat transfer problems.
- Understand and apply radiation properties of surfaces and participating media.
- Gain proficiency in numerical methods for solving radiative heat transfer equations.
- Explore applications of radiation in engineering systems.

Grading:

- Take-Home Midterm Exam: 35%
- Term Paper (Final): 35%
- Homework: 25%
- In-Class Activities: 5%

Class Rules

Attendance and Participation

- Regular attendance and punctuality are expected.
- Notify the instructor in advance if you need to miss a class.
- Engage in discussions and group activities actively.

Assignments and Deadlines

- Submit assignments on time. Late submissions may incur penalties unless prior arrangements are made.
- Seek help early for assignment difficulties; extensions may be granted in exceptional circumstances.

Academic Integrity

- Maintain academic integrity. Plagiarism or cheating will result in disciplinary action.
- Collaboration is allowed where specified but ensure your work reflects personal understanding.

Tentative Course Schedule:

Week	Topics	Reading Assignment - Modest Book	
Week 1	Introduction to Thermal Radia-	Chapter 1.1-1.3: Fundamentals of Thermal Radiation	
	tion		
Week 2	Blackbody Radiation, Radiation	Chapter 1.3–1.7: Basic Laws and Emissive Power	
	Laws		
Week 3	Radiative Properties of Real Sur-	Chapter 3: Radiative Properties of Real Surfaces	
Week 4	faces View Factors, Radiative Ex-	Chapter 4: View Factors	
Week 4	change Between Surfaces	Chapter 4. View Factors	
Week 5	Radiative Network Analysis, Ra-	Chapter 5.1–5.5: Gray Diffuse Surface Exchange	
	diation Shields	Chapter off offer drag Diffase Safface Enchange	
Week 6	Midterm Exam Preparation and	Review Chapters 1–5	
	Review (Take-Home Distributed)	-	
Week 7	Radiation in Participating Media	Chapter 10.1–10.4: RTE in Participating Media	
Week 8	Radiative Transfer Equation	Chapter 10.5–10.12: Solution Methods for RTE	
	(RTE)		
Week 9	Numerical Methods: Discrete Or-	Chapter 17.1–17.3: SN-Approximation	
Week 10	dinates Method Monte Carlo Method (Basics)	Chapter 8.1–8.5: Fundamentals, Ray Tracing, and Sur-	
Week 10	Monte Carlo Method (Basics)	face Exchange	
Week 11	Monte Carlo Method (Advanced	Chapter 8.6–8.7: Efficiency Considerations, Advanced	
WOOK II	Applications)	Topics	
Week 12	Radiation in Furnaces	Supplemental Materials Provided by Instructor	
Week 13	Solar Radiation Applications	Chapter 18.6: Direct Exchange Areas	
Week 14	Additional Topics	No Additional Readings	
Week 15	Term Paper Submission	No Additional Readings	

Tentative Homework Schedule:

Week	Topic	Homework Description	Due Date
Week 1	Fundamentals of Radiation	Solve problems on blackbody radiation and basic radiation laws. Focus on emissive power and spectral properties.	Week 2
Week 2	Blackbody Radiation and Laws	Apply Stefan-Boltzmann law and Wien's dis- placement law. Derive radiative properties for blackbody systems. Problems from Mod- est Chapter 1.5–1.7.	Week 3
Week 3	Radiative Properties of Real Surfaces	Calculate emissivity and reflectivity for dif- ferent materials. Use data for metals and dielectrics. Problems from Modest Chapter 3.1–3.4.	Week 4
Week 4	View Factors	Compute view factors using integration and algebraic methods. Problems include com- mon geometries like parallel plates and perpendicular surfaces. Modest Chapter 4.2–4.6.	Week 5
Week 5	Radiative Exchange Be- tween Surfaces	Solve network problems for radiative ex- change in gray, diffuse enclosures. Include cases with radiation shields. Problems from Modest Chapter 5.2–5.5.	Week 6
Week 6	Review and Midterm Prep	Review all homework problems for Chapters 1–5. Additional practice problems assigned for review.	Week 7
Week 7	Radiation in Participating Media	Derive and solve problems involving the ra- diative transfer equation (RTE) for absorb- ing and scattering media. Modest Chapter 10.1-10.4.	Week 8
Week 8	Radiative Transfer Equa- tion (RTE)	Apply solution methods for RTE, including integral and numerical techniques. Problems from Modest Chapter 10.5–10.12.	Week 9
Week 9	Discrete Ordinates Method (SN)	Implement the SN approximation for 1D and 2D problems. Solve for radiative fluxes in simple enclosures. Modest Chap- ter 17.2–17.4.	Week 10
Week 10	Monte Carlo Method (Ba- sics)	Solve problems involving random number generation and ray tracing for surface ex- change. Use Modest Chapter 8.1–8.5 for guidance.	Week 11
Week 11	Monte Carlo Method (Ad- vanced)	Apply Monte Carlo techniques to complex systems, including particulate media and ef- ficiency analysis. Problems from Modest Chapter 8.6–8.7.	Week 12
Week 12	Radiation in Furnaces	Analyze radiation heat transfer in furnace applications using simplified models. Sup- plemental problems provided by instructor.	Week 13
Week 13	Solar Radiation Applica- tions	Design a solar collector or evaluate solar ra- diation properties. Use data and methods from Modest Chapter 18.6.	Week 14
Week 14	Term Paper Preparation	Prepare for term paper submission. Optional problems on advanced radiative exchange ar- eas for additional practice.	Week 15