MAE 623 – Conduction Heat Transfer

Instructor:	Terence Musho, Ph.D., P.E. Office: 727 ESB Phone: (304) 293-3256 tdmusho@mail.wvu.edu Office hours: T 1:00-1:50pm and by appointment. In person or <u>Zoom</u> .	
Lecture:	MW 10:00 – 11:15 PM Room ESBE851	
Optional Text:	<u>Heat Conduction</u> , David Hahn (WVU eLibrary) <u>Heat Conduction using Green's Functions</u> , J.V. Beck <u>Nano/Microscale Heat Transfer</u> , Zhuomin Zhang (WVU eLibrary) <u>Inverse Heat Transfer: Fundamentals and Applications</u> , M. Necat Ozisik	
References:	<u>Analytical Methods in Heat Conduction</u> , Glen Myers <u>Introduction to Heat Transfer</u> , F.P. Incropera. D.P. DeWitt, T.L. Bergman, and A.S. Lavine	
Course Objectives:	The objective of this course is to provide students with the necessary knowledge to solve advanced conduction heat transfer problems. The course will begin with a review of general heat transfer concepts and transition into advanced heat transfer concepts. These advanced heat transfer concepts include analytical approaches to solving 2D and 3D steady state and transient conduction problems with an emphasis on solving these problem using a Green's Function method. The course will also cover special topics in area of nanoscale heat conduction problem.	
Grading:	Mid Term Exam40%Homework20%Final Exam40%	

Course Content:

1. Introduction/Review of Heat Transfer

- A. Modes of Heat Transfer: Conduction, Convection, Radiation
- B. Fundamental mechanisms of Heat Transfer
 - i. Atomistic Considerations
 - ii. Material Considerations Alloys, Temperature, Microstructure

2. Introduction to Heat Conduction

- A. Fourier's Law of Heat Conduction
 - i. Definitions: Thermal conductivity, Thermal diffusivity
 - ii. Mathematical Consideration of Linear PDEs

- B. Steady Heat Conduction Solution
 - i. Solving PDEs using Separation of Variables
 - ii. 2D and 3D Steady State Example

4. Fourier Analysis of Boundary Value Problems – Transient Conduction

- i. Introduction to Fourier series Orthogonal Functions
- ii. Mathematical Treatment of Non-Homogenous Boundary Conditions
- iii. Superposition Solutions
- iv. Product Solutions
- v. Duhamel's Theorem
- vi. Bessel Functions Cylindrical Solution

5. Green's Function Method – Transient Conduction

- i. Green's Function Derivation
- ii. 2D Transient GF Solution
- iii. 3D Transient GF Solution

6. Numerical Analysis

i. ANSYS FEA Heat Conduction Hands-on Demonstration

7. Inverse Heat Transfer Methods

- i. Inverse Heat Transfer Techniques
- ii. Conjugate Gradient Method

8. Micro/nano-scale Conduction Heat Transfer

- A. Quantized Heat Conduction
 - i. Quantum Mechanical Considerations
 - ii. Heat Capacitance Debye Temperature
 - iii. Mean-free Path Scattering Mechanisms

B. Solution to Ballistic Thermal Transport

- i. Quantum Conductance
- ii. Small Gap Conduction Dielectric Interactions

TENTATIVE COURSE Schedule

Date	Topics	Notes
Week 1	Introduction to Heat Transfer	
	Mechanisms of Heat Conduction in Solids	
Week 2	LCM, Semi-infinite Solids, Infinite Solids	
	Separation of Variables Solution to PDE	
Week 3	Orthogonal Functions, Fourier Series	Univ. Closed Sep. 4
	Boundary Value Problems	
Week 4	1D Transient Conduction Homogenous BC Example	
	1D Transient Conduction 1 NH BC Example	
Week 5	2D and 3D Steady State Conduction Example	
	Superposition of Solutions Derivation	
Week 6	Superposition of Solutions Example	
	Product Solution Example	
Week 7	Duhamel's Solution Example	
	Bessel Functions	
Week 8	Introduction to Green's Functions, Naming Convention	Fall Break Oct. 5-6
	X22 GF Derivation	
Week 9	X23 GF Example	
	X30 GF Example	
Week 10	Radial GF Example	
	Mid Term Exam	
Week 11	2D and 3D GF Example	
	Time Partitioning GF Solution	
Week 12	Intro to Inverse Heat Transfer	
	Conjugate Gradient Method	
Week 13	Finite Element Solution	
Week 14		Fall Recess Nov. 18-26
Week 15	Micro/Nanoscale Heat Transfer	
	Debye Derivation	
Week 16	Small Gap Considerations	Last Class Dec. 7
	Quantum Conductance	
Week 17		Winter Recess Dec. 16
	Final Term Paper Due at Final Time	